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Heisenberg Uncertainty Principle

• ψ = ψ
|ψ| ∈ Hilbert space V pure quantum state

• O ∈ {hermitian operators on V} quantum observable
• 〈O〉 := 〈ψ|O|ψ〉 expectation value
• 4O :=

√
〈O2〉 − 〈O〉2 standard deviation (uncertainty)

V = L2(Rn) suitable function space ⇒ 4O14O2 ≥ 1
2〈[O1,O2]〉

When O1 = q̂1, O2 = p̂1 = ~
i
∂
∂q1

(O1 and O2 are conjugated)

Heisenberg Uncertainty Principle:

4q̂14p̂1 ≥
~
2
← independent of ψ

deduced from noncommutativity relation [q̂1, p̂1] = i~.
Noncommutativity=Obstruction for simultaneous measurement.
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Conservation Law

Noether Theorem: for conjugated physical quantities O1,O2, if the
physical law does not depend on O1, then the quantity O2 is conserved
under system evolution.
• Translation-Symmetry ⇒ Conservation of Linear Momentum
• Rotation-Symmetry ⇒ Conservation of Angular Momentum
• Phase-Symmetry ⇒ Conservation of Charge
• Time-Symmetry ⇒ Conservation of Total Energy

Heisenberg Uncertainty Principle is a statistical variant of Noether
Conservation Law. So it is natural to ask

What is Energy-Time Uncertainty ?
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Mysterious Energy-Time Uncertainty

When it comes to Energy-Time Uncertainty, the notion of simultaneous
measurement becomes troublesome because:

1 Time is not a quantum observable
2 All observables can be measured with arbitrary accuracy in arbitrary

short time

In the famous Bohr-Einstein Debates, Einstein demonstrated that fixed
small 4t, we could measure E precisely using E = mc2. But Bohr argued
that the physical measurement of the mass m relies on a mechanical
design against the gravity of Earth. Therefore, by General Relativity, such
mechanical motion in the gravitational field yields an intrinsic uncertainty
of time duration it experiences. (Still problematic, of course)
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Quantum Speed Limit (Mandelstam-Tamm 1945)
The mysterious Energy-Time Uncertainty is not about simultaneous
measurement nor Relativity, but rather speed of quantum evolution!

Let H quantum Hamiltonian operator and P = |ψ〉〈ψ| projector onto the
state ψ = ψ(t) then they satisfies

4H4P ≥ 1

2
〈[H,P]〉ψ(0) & dP

dt =
i
~
[H,P]

Integrate against t ∈ [0, τ ] and get

τ4H ≥ π~
2
− ~ arcsin

√
〈P(τ)〉

Consider τorth such that ψ(τ) ⊥ ψ(0) then such τorth should satisfies

τorth ≥
π~
2

1

4H := τQSL
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Quantum Speed Limit (Margolus-Levitin 1998)

4H may diverge. They showed that for 〈H〉 > 0 with zero ground energy,

τorth ≥ τQSL :=
π~
2

max{ 1

4H ,
1

〈H〉}

1 Without referring to noncommutativity relation
2 τQSL sets an universal bound of minimal time for the system to

evolves from one state to an orthogonal state with given energy
3 Being orthogonal = being distinguishable
4 τQSL sets an intrinsic scale for quantum computational capability
5 Recently (Sci. Adv., 22 Dec 2021) both limits are tested for single

atom in an optical trap
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Beyond Quantum Mechanics (after 2018)

The formation

τorth ≥ τQSL :=
π~
2

max{ 1

4H ,
1

〈H〉}

leads to lim~→0 τQSL = 0. But it does not mean τorth vanishes as ~→ 0 !

Two surprising papers on Phys.Rev.Lett.:

1 QSL Is Not Quantum (Okuyama-Ohzeki)
2 QSL Across Quantum-Classical Transition

(Shanahan-Chenu-Margolus-del Campo)

As many-particle effects they obtained Classical Speed Limits for
Liouville equation and Wigner phase representation. Both QSL and CSL
can be derived from dynamical properties of Hilbert space under
unitary system evolution.
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Mathematical Digest

Today:

An avatar of QSL/CSL in geometry and topology
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Symplectic Manifold = Classical Phase Space

A symplectic manifold (M, ω) is a smooth manifold M with a closed
non-degenerate 2-form ω. A symplectic map (M1, ω1)

f−→ (M2, ω2) is a
smooth map with f ∗ω2 = ω1.
• (Kähler type) M = closed surface, ω = area form
• (Dynamical type) M = T ∗Q = {(q, p)|q ∈ Q, p ∈ T ∗

q Q},
ω = dq ∧ dp =

∑
dqi ∧ dpi

Darboux Theorem: for general symplectic (M, ω), near every point there
is a coordinate chart symplectic diffeomorphic to open domain in
(T ∗Rn = R2n, dq ∧ dp). Therefore any two symplectic manifolds are
locally equivalent.
• Symplectic geometry concerns about global problems.
• Problems for local charts can be very difficult.
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Hamiltonian Dynamics = Physical Laws

Think of M a pool of physical states and ω a generator of physical laws.
Given F : (M, ω)× I → R, we assign a (time-dependent) Hamiltonian
vector field XF by dF (−) = ω(XF ,−). The Hamiltonian dynamics I x−→ M
is the ODE

ẋ(s) = XF (x(s))

In standard local coordinates x = (q, p) it becomes

q̇(s) = ∂F
∂p (q, p, s) & ṗ(s) = −∂F

∂q (q, p, s).

The solution of ẋ(s) = XF (x(s)), when exists, is given by a flow

fs : M × I → M.
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Examples of Hamiltonian dynamics on T ∗Q

Denote the function generating the flow by F  f .

1 F (q, p, s) = C(s) fs = Id identity
2 F (q, p) = 1

2 |p|
2  fs(q, p) = (q + sp, p) linear motion

3 F (q, p) = 1
2(|q|

2 + |p|2) rotation
 fs(q, p) = (cos(s)q + sin(s)p,− sin(s)q + cos(s)p).

4 F (q, p) = 0.1 cos(2πq) + 1
2 |p|

2  simple pendulum
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Hamiltonian Diffeomorphisms

Each fs is symplectic with f0 = Id . If a symplectic isotopy can be obtained
this way we call it Hamiltonian diffeomorphism. They are like exact
differential 1-forms (since their dynamics are driven by dF ) and are
invisible by naive topological argument.
Time-independent Hamiltonian diffeomorphism form the most important
class but they do not form a group. Let F  fs and G  gs . Then their
composition fsgs ∈ Diff (M) is generated by F (x , s) + G(fs−1x , s). So it is
necessary to consider time-dependent Hamiltonian functions.

Proposition
All Hamiltonian diffeomorphisms form a subgroup Ham(M, ω) of Diff (M).
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Displacement Problem in Symplectic Topology

Given A,B ⊂ (M, ω). We say A is displaceable from B if
∃f = (fs)|s=1 ∈ Ham(M) such that

f (A) ∩ B = ∅.

For example M = S2, A = B = S1

1 if A is a big circle then A is not displaceable from itself
2 if A is a small circle then A is displaceable from it self
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Displacement Energy

More quantitatively, we define the Hofer displacement energy to be

e(A,B) := inf
F f
{‖F‖ : f (A) ∩ B = ∅}

where the norm is defined by

‖F‖ :=
∫ 1

0
(max

M
Fs −min

M
Fs)ds.

which is L1 in time and L∞ in phase space.

When A is not displaceable from B we denote by e(A,B) =∞.
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Quantitative Displacement in Symplectic Topology

We say A ⊂ (M, ω) a Lagrangian submanifold if ω|A = 0. It follows that
dim(A) = 1

2 dim M. Being Lagrangian is a sharp condition in the sense of
symplectic displacement.
Some deep facts:

1 if dim A + dim B < dim M then e(A,B) = 0

2 if dim(A) = 1
2 dim M but A is not Lagrangian and there is no

topological obstruction, then e(A,A) = 0

3 if A,B are Lagrangian and HF •(A,B) 6= 0, then e(A,B) =∞

On the other hand, let B ⊂ M open then

e(B,B) > 0.
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Quantitative Displacement of Mixed Type

When A is compact Lagrangian and B is open, our result is

Theorem
If A ∩ B 6= ∅ then e(A,B) > 0.

Moreover, we will use a quantum-speed-limit argument to characterize
the energy e(A,B) where we represent
• Lagrangian A by a quantum-like state
• Open B by a collection of quantum-like states
• Hamiltonian diffeomorphism f by a unitary-like system evolution
• Displacement by orthogonality of states

We ask for the least energy to displace a state from a given collection of
states in a unit of time.
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In absence of Hilbert space

While QSL/CSL is deduced from the unitary dynamic of Hilbert space, the
function theory on symplectic manifold does not fit very well into L2-space
formalism.
In fact, only L∞ takes place. It was proved by Eliashberg-Polterovich
that if we replace the L∞ norm in

‖F‖ :=
∫ 1

0
(max

M
Fs −min

M
Fs)ds.

by any Lp-norm, 1 ≤ p <∞, then the corresponding distance on
Ham(M, ω) is degenerate (and vanishing for closed M).
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Modeling with Derived Categories

Fix a ground ring k.
D(Q) = derived category of sheaves of k-modules over manifold Q.
(Sheaves contain a great deal of information!)
Work in a slightly refined dg-triangulated category D (described later).

1 D is our derived space of states
2 Rhom : Dop ×D → D(k-mod) is our derived inner product which

measures mutual overlapping of states
3 Instead of orthogonality we have left/right semiorthogonality
4 f ∈ Ham(T ∗Q) induces autoequivalence D → D.
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Microsupport à la Kashiwara-Schapira

A bridge between algebra and geometry

SS : {sheaves} → {sets}

For F ∈ D(Q), define its microsupport SS(F) ⊂ T ∗Q by the closure of
those (q0, p0) such that ∃ϕ : Q C1

−→ R and dϕ(q0) = p0 satisfying

(RΓ{q∈Q|ϕ(q)≥ϕ(q0)}F)q0 � 0

SS(F) is the closed conic subset consists of singular codirections, i.e.,
codirections along which the derived sections of F cannot propagate. This
notion is genuinely derived: one cannot recover SS(F) from SS(H•(F)) .
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Subcategory as collection of states

For geometric reason instead of D(Q) we choose to work in a more
"faithful" category D(Q ×R). Let

ρ : T ∗(Q × R) = {(q, p, z , ζ)} → {(q, p
ζ
)} = T ∗Q

and
Dζ≤0 = {F ∈ D(Q × R)|SS(F) ⊂ {ζ ≤ 0}}

Definition (Tamarkin Category)
• D := Dζ≤0(Q × R)left⊥ w.r.t. Rhom in D(Q × R)

• DA := {F ∈ D|SS(F) ⊂ ρ−1(A)}, ∀A
cls
⊂ T ∗Q

• DB := DT∗Q\B
left⊥ w.r.t Rhom in D, ∀B

open
⊂ T ∗Q
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Interleaving Distance

Let Tc : z 7→ z + c acting on D(Q × R). A remarkable feature of D is we
have for a ≥ 0, a natural transformation between endofunctors

τa : Id ⇒ Ta

Let F ,G ∈ D(Q ×R) and a, b ≥ 0. We say the pair (F ,G) is

(a, b)-interleaving if there exists morphisms F
α
⇒
δ

TaG and G
β

⇒
γ

TbF

satisfying [F α−→ TaG
Taβ−−→ Ta+bF ] = τa+b(F)

[G γ−→ TbF
Tbδ−−→ Ta+bG] = τa+b(G)

The interleaving distance is defined to be

d(F ,G) := inf{a + b | (F ,G) is (a, b)-interleaving}
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Categorical Energy

Theorem (Existence of Microlocal Projector)
Let B be a bounded open subset of T ∗Q, then in D(Q × Q × R) there
exists an exact triangle (PB → K∆ → QB

+1−−→) such that the convolution
with the above triangle gives rise to the semiorthogonal decomposition
with respect to the triple of subset categories
(DB(Q × R),D(Q × R),DT∗Q\B(Q × R)). Moreover, the projector
construction B 7→ PB is compatible with Hamiltonian dynamics.

PB admits a right-adjoint functor EB:

Rhom(G • PB,F) ∼= Rhom(G, EB(F))

Definition (Categorical Energy relative to B)
∀F ∈ D(Q ×R) we define eB(F) := d(0, EB(F)).
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Displacement Energy of Symplectic Excalibur

Recall the definition of Hofer displacement energy

e(A,B) := inf
F f
{
∫ 1

0
(max

M
Fs −min

M
Fs)ds : f (A) ∩ B = ∅}

Theorem (Comparison with Hofer Energy)
Given A closed and B open. Then for any F ∈ DA(Q ×R) one has

e(A,B) ≥ eB(F).
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Displacement Energy of Symplectic Excalibur

Theorem (Quantitative Displacement of Mixed Type)
Given A compact Lagrangian and B open. Assume that A ∩ B 6= ∅, then

e(A,B) > 0

To prove this positivity it suffices to localize to a Darboux-Weinstein
neighborhood T ∗A of A and open ball B in T ∗Rn ⊂ T ∗A.
Moreover, for suitable choice of F ∈ DA a nontrivial lower bound estimate
(in the sense of hard analysis) of eB(F) is available.
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Displacement Energy of Symplectic Excalibur

In T ∗Rn, let B = B(r) = {q2 + p2 < r2} be a standand open ball and let
F = kRn×R≥0

∈ D(Rn ×R) be the sheaf quantization of the zero section
Rn × {p = 0}. Our knowledge of PB and EB enables us to compute:

Proposition (Capacity-like Property)
eB(F) ≥ 1

2πr2.

Let L be a smooth manifold and suppose U = ȷ(B(r)) is a symplectically
embedded ball of T ∗L relative to L (that is ȷ−1(L) = Rn ∩ B(r)).

Theorem (Relative Energy-Capacity Inequality)
e(L,U) ≥ 1

2πr2.
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Summary

Quantum Footprints in symplectic geometry and topology

1 Uncertainty Principle  Nonsqueezing of Symplectic Balls
2 Quantized Phase-Energy Levels  Nonsqueezing of Contact Balls
3 Quantum Unsharpness  Rigidity of Partition of Unity
4 Quantum Speed Limit  Symplectic Displacement Energy

Question
Pick your favorite quantum-like phenomenon.
Can you find its footprint in symplectic geometry and topology?
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Thank You !
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